a survey on omega polynomial of some nano structures
Authors
abstract
similar resources
Narumi-Katayama Polynomial of Some Nano Structures
The Narumi-Katayama index is the first topological index defined by the product of some graph theoretical quantities. Let G be a simple graph. Narumi-Katayama index of G is defined as the product of the degrees of the vertices of G. In this paper, we define the Narumi-Katayama polynomial of G. Next, we investigate some properties of this polynomial for graphs and then, we obtain ...
full textOn Symmetry of Some Nano Structures
It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for i≠j, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce...
full textextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولon symmetry of some nano structures
it is necessary to generate the automorphism group of a chemical graph in computer-aidedstructure elucidation. an euclidean graph associated with a molecule is defined by a weightedgraph with adjacency matrix m = [dij], where for i≠j, dij is the euclidean distance between thenuclei i and j. in this matrix dii can be taken as zero if all the nuclei are equivalent. otherwise,one may introduce dif...
full textNote on Omega Polynomial
Omega polynomial, counting opposite edge strips ops, was proposed by Diudea to describe cycle-containing molecular structures, particularly those associated with nanostructures. In this paper, some theoretical aspects are evidenced and particular cases are illustrated.
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of mathematical chemistryPublisher: university of kashan
ISSN 2228-6489
volume 2
issue 2 2011
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023